

Comparative analyses of health traits from regional projects for genetic improvement of dairy health

K.F. Stock¹, D. Agena¹, S. Spittel², R. Schafberg³, M. Hoedemaker², F. Reinhardt¹

- ¹ Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden / Aller, Germany
- ² University of Veterinary Medicine Hannover, Clinic for Cattle, Hanover, Germany
- ³ Martin-Luther-University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle / Saale, Germany

Email: friederike.katharina.stock@vit.de

Background

- increasing importance of functional traits in dairy: intense R&D activities particularly in the field of health (internationally, see ICAR survey 2012)
- comprehensive key for health data recording (Germany)
 - \rightarrow basis for standardized recording and analyses, <u>but</u>
 - no general concept of health monitoring,
 - considerable differences regarding start-up conditions of health monitoring,
 - no uniform rules for continuous health monitoring (recording practices, efforts to address data quality issues)

Study approach

sources of health data

- veterinarians (selected spectrum of exact diagnoses)
- expert groups like claw trimmers or feed consultants (small spectrum of specific diagnoses: claws, nutrition)
- <u>owners</u> (indirect involvement of vet. and non-vet. experts; broad spectrum of diagnoses and further health-related data)

different on-farm conditions

- traditional farming (relatively small herd sizes, limited routine documentation on paper, blackboard, ...)
- technically supported farming (relatively large herd sizes, extensive use of herd management software)

Do we arrive at the same conclusions regarding selection decisions for improved health?

Basis of comparative analyses

- same comprehensive key for health data recording in different herd management software (HMS)
 - hierarchical structure \rightarrow user-defined recording specificity
 - from very general (e.g. Mastitis) to very specified (e.g. Chronic catarrhal mastitis)
 - ⇒ user-acceptance
 + suitability for central analyses on various specificity levels
- regional cooperation partners and use of existing infrastructure \rightarrow documentation of health events by farmers via HMS
 - \rightarrow transfer to central health data base (vit)

Outline of regional projects

Key figure	GKuh	THU
Region in Germany	Northwest (Osnabrück)	Mideast (Thuringia)
Starting point	No existing health- recording system → installation with intense on-farm support	Long-term experience in electronic documentation (incl. health data) \rightarrow some adjustments
Number of farms	51	19
Farm size (average no. of cows per farm 2010/2011)	96 (max. 546)	802 (max. 1.709)
Time horizont	01.01.2010 - 30.06.2012	01.01.2009 - 30.06.2012
Total no. of females (all farms, whole period)	16,179 incl. 9,278 cows	50,277 incl. 29,763 cows
Total no. of diagnoses → health events / diseases	21,778 → 20,491	436,769 → 197.081
No. of animal with ≥ 1 diagnosis record	7,127	34,596

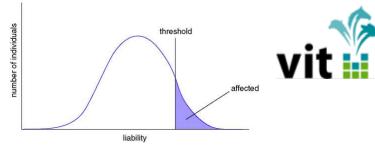
documentation of first diagnoses (GKuh) vs. first diagnoses + further treatments (THU)

Definition of health traits

- available health information: diagnosis + date + location (if applicable: quarter of the udder, limb)
- diseases with period of risk within each lactation → <u>observation unit</u>: animal X lactation
- Iactation incidence rates (LIR) as measures for the quantitative importance of diagnoses
 - affected = at least one diagnosis record
 - unaffected = at risk without diagnosis
- quasi-continuous coding number of health events in a given lactation (accounting for repeated occurrence of disease and multiple affections)
 - \rightarrow diseases with longer periods of risk and/or multiple locations

Lactation incidence rates (LIR)

	GK	Kuh	THU		
Trait	n	LIR (%)	n	LIR (%)	Disease focusses:
Early Mastitis (-10 to 50 DIM)	11,555	13.6	41,118	24.4	udder
Early Mastitis (L2ff)	7,218	13.5	26,300	24.8	claws
Late Mastitis (51 to 305 DIM)	8,833	22.1	34,015	35.8	reproduction
Late Mastitis (L2ff)	6,000	26.0	22,068	42.3	metabolism
Retained placenta	12,111	7.9	43,132	11.9	
Ovary cycle disturbances	8,553	9.9	34,239	41.4	Heterogeneity: • extent of routine
Ketosis	11,446	4.8	40,245	3.3	screenings (impact
Milk fever	12,198	6.5	44,335	3.7	on diagnosis rates),
Abomasal displacement to the left	10,261	4.5	37,192	2.9	 documentation
Non-purulent claw diseases	8,362	9.9	33,161	28.9	agreements, e.g.
Interdigital hyperplasia / Corns	8,259	4.6	29,440	10.5	lameness-related vs. all claw diseases
Purulent claw diseases	8,982	28.9	35,303	46.1	
Ulcers	8,402	11.0	30,104	16.3	
Digital dermatitis / Mortellaro	8,501	14.0	30,202	18.3	
Digital phlegmon / Panaritium	8,356	7.6	29,967	17.0	


Genetic analyses

- separate by data origin (GKuh, THU)
- variance component estimation with REML (VCE6), genetic evaluation with BLUP (PEST)
- repeatability linear animal model
- correlation analyses based on univariately estimated breeding values (EBV) from GKuh and THU

with PAR_i = fixed effect of parity class,

- hys_i = random effect of herd X year-season of calving,
- pe_{k} = random permanent environmental effect of the animal,
- a_k = random additive genetic effect of the animal,
- e_{ijkl} = random residual

Heritabilities

	GKuh	THU
Trait	h² (h² _{tr_NV})	h² (h² _{tr_NV})
Early Mastitis (-10 to 50 DIM)	0.091	0.034
Early Mastitis (L2ff)	0.110	0.038
Late Mastitis (51 to 305 DIM)	0.089	0.078
Late Mastitis (L2ff)	0.140	0.087
Retained placenta	0.017 (0.055)	0.048 (0.126)
Ovary cycle disturbances	0.008	0.036
Ketosis	0.036 (0.163)	0.034 (0.198)
Milk fever	0.022 (0.080)	0.024 (0.132)
Abomasal displacement to the left	0.026 (0.124)	0.030 (0.189)
Non-purulent claw diseases	0.024	0.083
Interdigital hyperplasia / Corns	0.036	0.133
Purulent claw diseases	0.079	0.092
Ulcers	0.067	0.077
Digital dermatitis / Mortellaro	0.004	0.099
Digital phlegmon / Panaritium	0.031	0.050
	SE _{h²} ≤0.03	SE _{h²} ≤0.01

Genetic determination of health traits: h² ~ 0.03-0.12

> Heterogeneity:
> extent of routine screenings (impact on diagnosis rates),
> documentation agreements, e.g. lameness-related vs. all claw diseases

some impact on variance components

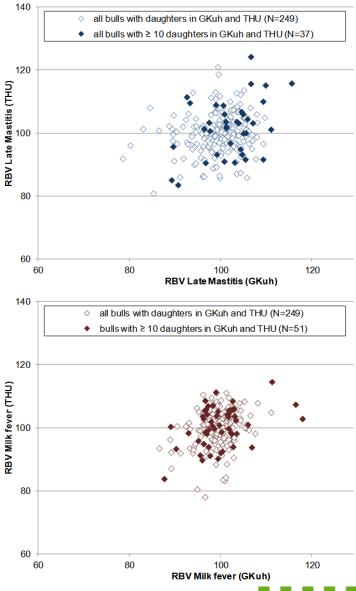
Estimated breeding values (EBV)

- many bulls with mostly few daughters in each of the projects \rightarrow few bulls with reliable EBV for health traits
- small basis of analyses across projects (EBV correlations):
 - few bulls (N=249) with daughters in both projects
 - very few bulls (N=53) with \geq 10 daughters in each of the projects

Key figure	GKuh	THU		
No. of bulls	820	1,437		
\rightarrow No. of daughters	10.3 (1 - 1,242)	19.7 (1 - 1,012)		
No. (%) of bulls with ≥10 daughters	149 (18%)	570 (40%)		
\rightarrow No. of daughters	44.8	44.3		
No. (%) of bulls with ≥10 daughters each	53 (6% 4%)			
\rightarrow No. of daughters	78.4 63.9			

No. of	EBV reliability *						
progeny (n)	h ² =0.05	h ² =0.07	h ² =0.10	h ² =0.15			
5	0.06	0.08	0.11	0.16			
10	0.11	0.15	0.20	0.28			
15	0.16	0.21	0.28	0.37			
20	0.20	0.26	0.34	0.44			
25	0.24	0.31	0.39	0.49			
50	0.39	0.47	0.56	0.66			
75	0.49	0.57	0.66	0.75			
* approximation: $r^2 = n / (n + k)$ with $k = (4 - h^2) / h^2$							

EBV correlations (I)


correlations between EBV for corresponding health traits from GKuh and THU

	B1	0_2	B_rel15				
Trait	Ν	r	Ν	r			
Early Mastitis (-10 to 50 DIM)	50	0.28	36	0.36			
Early Mastitis (L2ff)		0.29	26	0.23			
Late Mastitis (51 to 305 DIM)		0.40	45	0.40			
Late Mastitis (L2ff)	26	0.45	42	0.30			
Retained placenta	51	0.25	15	0.27			
Ovary cycle disturbances	35	0.33	5	0.19			
Ketosis	50	0.42	23	0.42			
Milk fever	51	0.39	11	0.50			
Abomasal displacement to the left	41	0.43	14	0.59			
Purulent claw diseases	37	0.55	42	0.50			

B10_2 = bulls with \ge 10 daughters in each of the projects, B_rel15 = bulls with EBV reliabilities \ge 15% in each of the projects

significantly positive correlations between EBV for analogous health traits

EBV correlations (II)

correlations between EBV for health traits and selected EBV from routine genetic evaluation (bulls with \geq 10 daughters within project):

	GKuh				THU					
Trait	Ν	EBV _{health}	BV _{health} Routine EBV (1208)			Ν	EBV _{health}	Routine EBV (1208)		
			RZM	RZN	#RZS / +RZR			RZM	RZN	[#] RZS / ⁺RZR
Early Mastitis (-10 to 50 DIM)	130	75 - 115	+0.03	+0.19	+0.30 #	504	75 - 122	-0.10	+0.33	+0.43 #
Early Mastitis (L2ff)	64	73 - 114	+0.06	+0.21	+0.33 #	355	77 - 120	-0.01	+0.39	+0.47 #
Late Mastitis (51 to 305 DIM)	88	88 - 116	-0.15	+0.30	+0.24 #	434	79 - 124	-0.12	+0.32	+0.45 #
Late Mastitis (L2ff)	54	85 - 114	-0.27	+0.18	+0.22 #	307	78 - 122	-0.16	+0.30	+0.46 #
Retained placenta	137	88 - 114	-0.17	+0.24	+0.24 +	520	77 - 117	-0.09	+0.08	+0.10 +
Ovary cycle disturbances	84	86 - 112	-0.08	+0.29	+0.21 +	449	68 - 124	-0.10	+0.29	+0.32 +
Ketosis	126	85 - 115	+0.06	+0.20		502	77 - 119	-0.02	+0.10	
Milk fever	137	86 - 123	-0.02	+0.05		524	68 - 116	-0.01	+0.13	
Abomasal displ. to the left	104	82 - 112	-0.22	+0.37		469	74 - 118	+0.20	+0.15	
Purulent claw diseases	94	86 - 115	+0.01	+0,21		444	76 - 128	+0.19	+0.23	

RZM = EBV for milk yield, RZN = EBV for functional herd life (longevity), RZS = EBV for somatic cell score, RZR = EBV for reproduction

Conclusions

- owner-recorded health data from distinct projects as valuable sources of information for genetic analyses
 - impact of health monitoring systems
 - trait-dependent (diseases with high rates of subclinical cases)
 - trait distributions (LIR) > genetic parameters

 → some re-ranking among the quantitatively important health traits, but similar heritabilities of mostly 0.03-0.12
- promising results of comparative analyses based on EBV for health traits (similar selection decisions)
 ↔ limited data within project + regional use of bulls

Implications

- different challenges within projects (start-up / implementation of health monitoring vs. adjustments of routine on-farm documentations)
- high quality of owner-recorded health data requiring intense expert support and continuous communication between all cooperation partners
- informative and helpful <u>health reports</u> as immediate rewards for the owners ensuring continuous data flow
 - use of experiences from distinct projects
 for <u>extending collection</u> & <u>combining analyses</u> of health data
 → sound basis for genetic evaluation for health traits
 to allow selection for improved health and longevity

owners of participating farms

29 August 2012 K.F.Stock

PD Dr. habil. Kathrin F. Stock Email: friederike.katharina.stock@vit.de Phone: ++49 - 4231 - 955 623

IT Solutions for Animal Production

Vereinigte Informationssysteme Tierhaltung (vit) w.V. Heideweg 1, 27283 Verden at the Aller, Germany